
Abstract
Superscalar microprocessors obtain high performance

by exploiting parallelism at the instruction level. To effec-
tively use the instruction-level parallelism found in gen-
eral purpose, non-numeric code, future processors will
need to speculatively execute far beyond instruction fetch
limiting conditional branches. One result of this deep
speculation is an increase in the number of instruction and
data memory references due to the execution of mispre-
dicted paths. Using a tool we developed to generate specu-
lative traces from Intel architecture Unix binaries, we
examine the differences in cache performance between
speculative and non-speculative execution models. The
results pertaining to increased memory traffic, mispre-
dicted path reference effects, allocation strategies, and
speculative write buffers are discussed.

1 Introduction

Parallel computation is an increasingly important
research area in the quest for faster general purpose micro-
processors. Superscalar processor architectures exploit
instruction-level parallelism to concurrently run multiple
instructions per cycle. Some current implementations can
issue two instructions per cycle and several can issue four
or even six instructions at once under certain conditions
[1][3][4]. Research has shown that more instruction-level
parallelism exists in often used, non-numeric code but
architecture designers face many problems in harnessing
this potential concurrency. One problem is that the length
of an unbroken stream of instructions, a basic block, aver-
ages from 3.0 - 6.5 instructions in applications such as
those found in the SPEC benchmark suite. Thus to achieve
high issue rates instructions must be fetched the basic
block ending conditional branches. This can be accom-
plished by speculatively executing instructions past
branches, i.e., the direction of the branch is guessed before
the branch condition is computed in the pipeline and exe-
cution continues in the predicted direction until the branch

is resolved. If the prediction were incorrect, the processor
state must be restored to the state prior to the predicted
branch and restart execution down the correct path.

Due to of their deep pipeline and high issue rates,
future processors will speculatively execute many instruc-
tions prior to branch resolution. While this speculation
enables instruction issue to continue during branch com-
putation, it produces some unavoidable side effects. One
effect is an increase in the number of instruction and data
references. These extra, “wrong” references could cause
cache pollution and significantly increase memory bus
traffic. On the other hand, they could act as prefetching
references, bringing data or instruction lines into the cache
for later, correctly predicted path execution. Another effect
stemming from speculation is that only valid writes should
modify the cache since they must be easily undone during
misprediction recovery. These changes in the execution
model warrant a reexamination of current memory system
models. In this paper we examine the effects of deep spec-
ulation on cache behavior.

The ideal method for examining the cache performance
of a speculative processor is to generate memory reference
traces with a full execution simulator and use them as
input to a cache simulator. Unfortunately, execution simu-
lators are time consuming both to build and run. As an
alternative, we have designed a code instrumentation tool
called spex which runs on Intel architecture (ix86) Unix
systems and can be used to generate memory traces which
are a close approximation to that of a speculative proces-
sor. Long traces can be obtained relatively quickly without
the use of an execution simulator. Spex adds branch pre-
diction, speculative execution, and memory trace produc-
tion to an existing binary. It creates a new binary which
can be run on a current generation, non-speculative pro-
cessor. The number of cycles required to resolve each con-
ditional branch is approximated with a fixed value, n,
which is an input to the tool. In reality, branch resolution
times in pipelined and superscalar machines will vary
depending upon the type of conditional branch, the data
dependencies between instructions currently in the pipe-

Published in Proceedings of the International Parallel Processing Symposium, April 1994, Cancun, Mexico.

The Effect of Speculative Execution on Cache Performance

Jim Pierce1 and Trevor Mudge

University of Michigan

1. Jim Pierce was supported in this work by a grant from the Intel Corp.

trev
Typewritten Text

trev
Typewritten Text
pp. 172-179

line, the number, type, and data dependencies of instruc-
tions waiting to be issued, and processor exceptions. Thus,
our results should be interpreted as bounds for machines
that speculate no more than n instructions past a condi-
tional branch.

Since the spex model and a true speculative processor
have different viewpoints of speculative paths, it is impor-
tant to clarify some terms used in this paper. A speculative
path is the execution path taken after a conditional branch
prediction. The spex model can immediately classify the
speculative path as a correct path (correctly predicted
direction) or a wrong path (mispredicted direction) by com-
paring the predicted direction with the actual result of the
branch. Thus it can tag references generated on these paths
as correct path references or wrong path references. It must
be remembered, however, that a real speculative processor
cannot foresee the accuracy of the prediction until the
branch is resolved some distance down the speculative
path. Therefore, an immediate cache action such as line
allocation cannot be based upon the correctness of the ref-
erence.

We used spex and several different cache simulators to
model cache performance when speculatively executing
SPEC92 applications. It was not our intent to specify an
optimal cache configuration for a certain processor based
only upon application generated references. Many studies
have shown that this leads to meaningless conclusions [5].
Instead we examined the differences in cache performance
between the speculative and non-speculative execution
models. We believe that similar results would be found
using a more complete workload containing OS effects.

The main result of the study is that deep speculation
causes a significant increase in the number of data refer-
ences, yet data misses increase by usually less than 15%. In
fact, by calculating the traffic ratio we found that cache
efficiency actually increases as speculation increase. Fur-
ther investigation revealed that wrong path misses exhibit
prefetch, pollution, and LRU reordering effects. In most
observed cases the prefetch effect is dominant and wrong
path misses cause a decline in the number of correct path
misses. In addition, it is observed that mispredicted path
instruction references also exhibit this prefetching effect.
Finally, we discuss write allocation policies and the number
of buffers required to hold speculative writes.

2 Description of Spex

Spex is a binary instrumentation tool which allows the
user to gather speculative traces on a non-speculative pro-
cessor. It was built for an Intel architecture (i386, i486,
Pentium) computer running Unix SysVR4 and currently
will instrument statically-linked code produced by the
Intel/AT&T and USL CCS C compilers. Spex and other

trace generation tools add additional instructions to a pro-
gram to record runtime information and memory references
while preserving the original logical operation of the pro-
gram [10][12]. In addition, spex incorporates branch pre-
diction and wrong path recovery code to allow the
execution of mispredicted paths. In use, spex is similar to
that of IDtrace for the Intel architecture processors and
pixie for the MIPS processor family [6][9]. For input, spex
requires a binary file and two numbers. One number speci-
fies the choice of branch prediction algorithm and the other
number is the branch resolution depth. A depth argument of
zero corresponds to no speculation while a positive argu-
ment represents the number of instructions to be executed
down a mispredicted path before recovery. Since all
mispredictions take the same number of instructions to
resolve, the case of a later conditional branch being
resolved before an earlier one cannot occur.

To date, seven prediction algorithms have been imple-
mented and they can be divided into four classes. Three are
static algorithms: always taken, prediction based on branch
opcode, and prediction based on opcode and direction. Two
are dynamic predictors using a variable sized history table.
The table is indexed by the address of the conditional
branch. It can be direct-mapped, up to eight-way set asso-
ciative, or a table entry can be shared by multiple
addresses. One dynamic algorithm has a bit per table entry
corresponding to the previous direction of the branch. The
other has a two or three bit saturating counter per table
entry to maintain a weighted history for each branch [8].
Another group of prediction algorithms use two-level adap-
tive training schemes with various size history tables and
registers [13]. The final type is a profile algorithm where
the direction is determined by looking for the prediction
entry in a file. If an entry for a particular branch doesn’t
exist in the file, one of the above algorithms is used to pre-
dict the branch.

The memory trace generated by spex is a list of 5-byte
entries (1 byte tag, 4 byte address), one for each instruction
or data memory reference. Different tags are used to differ-
entiate between correct path and wrong path references.
Most generated traces are extremely long and therefore are
piped directly to a memory simulator. As an example of
use, spex can instrument a program called bench by typing:

spex -d 10 -b 5 bench

where bench is a statically-linked executable. The new
executable,bench.spex , will execute 10 instructions
down a wrong path and use branch prediction algorithm
number 5 (dynamic counter with a default counter size of 2
bits). Running spex.bench creates two more files:
bench.spst , a statistic file containing runtime informa-
tion andbench.sptr , the trace file. These files can then be

used by postprocessing tools or the trace file can be piped
into a memory system simulator.

2.1 Instrumentation Details

The executable file structure and memory reference
instrumentation is based on that of a previous i486 instru-
mentation tool, IDtrace. In short, the text section is disas-
sembled, binary code is inserted before every instruction,
all control instructions are relocated to account for the text
expansion. Then, the new text, the original, unmodified
data sections, some working tables, and trace buffers are
combined to create the new executable. Complex ix86
instructions, indirect addressing, and variable instruction
lengths are some of the issues which make binary instru-
mentation difficult and sometimes impossible. In-depth dis-
cussion of these issues and some restrictions on applicable
programs can be found in [6]. The speculative instrumenta-
tion adds significantly to the size and runtime of the new
binary. Code expansion is roughly 25 times. Runtime is
increased by factors of 25-45 for zero depth (no specula-
tion) and 35-65 for depth 10 speculative execution. In com-
parison, IDtrace produces a binary about 12 times larger
and increases the runtime by about a factor of 12 for a full
execution trace. Spex adds code prior to each conditional
branch to call the prediction algorithm and possibly begin
wrong path execution. Code must also be added before
each instruction to possibly exit from wrong path execu-
tion. Finally, guard instructions must be added prior to any
instruction that can cause an exception. This prevents an
exception from occurring and halting execution while pro-
cessing incorrect data down a wrong path. For instance,
suppose during execution of an instrumented program a
pointer has yet to be initialized and it has the value zero.
The original code might be of the form

if (pointer initialized)
thenreference pointer
elseinitialize pointer

and the conditional branch corresponding to theif state-
ment could be mispredicted. Then an attempt would be
made to reference memory location zero and a segmenta-
tion fault would halt execution. Boundary checking code is
added before all reads and writes to prevent this error.
Unfortunately, there are many more exceptions such as
divide by zero and floating point errors which could be trig-
gered by incorrect data during wrong path execution. Since
it is too cumbersome to add code to check for all excep-
tions only segmentation fault protection code is added
throughout the instrumented code. Deep path speculation
on some programs causes floating point errors and code is
added on an individual basis to handle these cases.1

The instrumented code action is straightforward.
Assume a correct path is being executed. At each branch
the prediction algorithm is called and the result is com-
pared with the known actual direction of the branch. If they
are the same execution continues down the correct path. If
the branch is mispredicted, the register state and correct
next instruction location are saved, a counter is set to the
wrong path depth argument, and execution begins down the
wrong path. The following actions are taken for each
wrong path instruction:
• The counter is decremented and when it is zero wrong

path execution is terminated.
• If the instruction performs a read or write the address

is first checked against segment boundaries to prevent
segment violations caused by incorrect data.

• Memory reference entries are output with special
wrong path tags.

• If the instruction performs a write, the address and
original value are stored in a write restore buffer.

When wrong path execution terminates the writes are
undone using the data stored in the write restore buffer, the
register state is restored, the prediction algorithm is
updated, and execution restarts at the saved correct branch
path address. Sometimes wrong path execution can termi-
nate without going down the full wrong path depth. This
can happen in the following cases:
• Exit call - Cannot exit during wrong path execution.
• System call - This is a call to the OS and cannot be

traced.
• Data segment fault - An invalid read or write outside

the data segment would cause a fault if allowed to pro-
ceed.

• Indirect jump - An attempt to index a jump table with
an invalid index will usually cause execution to con-
tinue outside the text section and so wrong path execu-
tion is always halted.

• Indirect call - Indirect calls in instrumented code are
handled by a runtime lookup matching the original tar-
get address with the new target address in the instru-
mented code, see [6]. If the original address is
computed from incorrect data the lookup will fail and
wrong path execution is halted.

• Execution fault - This could be caused by a floating
point or divide by zero exception. Code cannot be
added before every instruction to test for all possible
exceptions so complete execution terminates.

The above termination conditions occur very infre-
quently. In the benchmarks described below, wrong paths

1. The C signal library functions could have been used to handle
all exceptions efficiently but its use would have interfered with
breakpoint exceptions and made debugging binary code
extremely difficult.

executed to the full depth of 25 instructions over 90% of
the time, see Table 1. Furthermore, it is unlikely that a real
speculative processor would continue issuing instructions
down a path which produced a segmentation fault. Thus,
premature terminations do not compromise the accuracy of
the trace.

3 Results

To study the effect of speculative execution on cache
performance, traces were generated by spex instrumented
code and fed into two cache simulators: a modified version
of Tynero and a multicache simulator designed to monitor
prefetching and pollution effects [7]. Both simulators dis-
tinguish between correct path references and misses and
wrong path references and misses. The test suite consisted
of the SPEC92 C benchmarks, see Table 2. All experiments
were run on an Intel 50 MHz i486 machine running USL
Unix SysVR4.2.

Our processor/memory model is a multi-issue, pipelined
processor with out-of-order execution requiring deep spec-
ulation to maintain a high instruction issue rate. All mispre-
dicted paths are assumed to execute down a constant,
predefined depth before branch resolution. The processor
has a first level set-associative, non-blocking cache with an
LRU replacement policy. Cache line size is fixed at 32
bytes for all experiments. The cache completes all out-

Termination Type Occurrences Percentage

System Call 347K < 1%

Data Segment Fault 14.1M 8%

Indirect Jump 947 0%

Indirect Call 13K 0%

TABLE 1. Termination statistics -The number and percentage of
mispredicted paths which were terminated before executing down
25 instructions. Statistics are for the combination of all
benchmarks. The total number of mispredicted paths was 174.8
million.

Program Description

cc1 Major forked process of GNU C Compiler

compress Unix compression utility

ear Inner ear model, floating point

eqntott Boolean equation to truth table translator

espresso Logic minimization tool

sc Spreadsheet Program

xlisp XLISP interpreter solving 8 queens problem

TABLE 2. The SPEC92 benchmarks used in this study.

standing memory requests. If a wrong path reference
causes a read miss,the cache line is updated even if the
branch is resolved before the request to memory is com-
pleted. Speculative path writes are held until the branch is
resolved so that the cache always contains valid data.
Finally, the cache write policy is copy-back with write allo-
cation for correct writes.

Two branch prediction algorithms are used in this study.
Algorithm 1 is a two-level adaptive scheme with a 512
entry, 4-way associative register table and a 4096 entry pat-
tern table containing 2-bit saturating counters [13]. This
algorithm is expensive in terms of hardware but it achieves
excellent accuracy for the benchmarks in our study, see
Table 3. It is the algorithm used unless otherwise specified.
Algorithm 2 uses a simpler history table of 1024, 2-bit sat-
urating counters. No tags are recorded so multiple
addresses which map to the same table entry will share the
counter.

3.1 Total Data Traffic

The main result of our study is that the total data mem-
ory traffic is not significantly increased by deep speculation
in most benchmarks. Figure 1 shows the percent increase in
total (correct and wrong path) misses of speculative execu-
tion over that of non-speculative execution.

Figure 2 shows that there is a substantial increase in the
number of data references due to speculation (up to 75%

Program Alg. 1 Alg. 2 Program Alg. 1 Alg. 2

cc1 88 85 espresso 93 86

compress 89 87 sc 96 92

ear 96 94 xlisp 95 85

eqntott 96 82

TABLE 3. Branch prediction accuracies.

FIGURE 1. Speculative data miss percentage increase over
that of non-speculative execution. The cache is 32K with 4-way
set associativity.

cc
1

co
m

p
re

ss e
a

r

e
q

n
to

tt

e
sp

re
ss

o sc

xl
is

p

0

10

20

30

40

50

60

70

80

90

P
e

rc
e

n
t

In
cr

e
a

se
 in

 T
o

ta
l M

is
se

s

5

10

25

50

for 50 deep speculation) yet for most benchmarks deep
speculation increases the total number of data cache misses
by only around 15% over non-speculative data cache
misses. The traffic ratio, defined as

is a measure of the efficiency of the cache. Figure 3 shows
that the cache usually becomes more efficient, traffic ratio
decreases, as speculation increases. The exception to this is
compress. A 0.71 traffic ratio without speculation from
Figure 3 reveals that the cache is not well suited for this
application. Repeating the experiment using a smaller line
size resulted in a lower miss ratio. Furthermore, 8% of the
non-speculative references missed the cache when specu-
lating 25 instructions deep. We suspect that compress has
poor locality down several mispredicted paths which
repeatedly get executed. The large line size magnifies the
traffic problem. More work is required to find which
instructions in compress produce these misses.

The next two figures display how the bandwidth
increase changes with increasing cache size and increasing
associativity. As would be expected, configuration changes
which reduce pollution generally reduce the additional
bandwidth required for speculative execution. The incon-
sistent data for large associativities is probably due to the
small number of misses.

3.2 Wrong Path Miss Effects

There are several ways that the additional wrong path
references can affect the cache. First, they can prefetch data
which will later be used during correct path execution. A
miss during correct path execution can then be avoided if
this data is accessed before being displaced in the cache.

(cache misses + copy-backs) * (cache line size)

(memory references without a cache) * (word size)
traffic ratio =

FIGURE 2. Total data references. The zero depth speculation
represents no speculation.

cc
1

co
m

pr
es

s

ea
r

eq
nt

ot
t

es
pr

es
so sc

xl
is

p

0

100

200

300

400

500

600

700

800

900

1000

T
ot

al
 D

at
a

R
ef

er
en

ce
s

(m
ill

io
ns

)

0

5

10

25

50

These wrong path misses are called prefetch misses and
they reduce the number of correct path misses. On the other
hand, pollution misses increase the number of correct path
misses. They are caused by wrong path read misses allocat-
ing lines which displace lines needed for later correct path

FIGURE 3. Traffic ratio for different benchmarks and
speculation depths. The cache size is 32K and is 4-way set
associative.

cc
1

co
m

pr
es

s

ea
r

eq
nt

ot
t

es
pr

es
so sc

xl
is

p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
at

a
T

ra
ffi

c
R

at
io

0

5

10

25

50

FIGURE 4. Bandwidth increase over non-speculative
execution for different cache sizes. Caches are direct mapped
and the speculation depth is 25.

cc1 eqntott espresso sc xlisp
0

5

10

15

20

25

P
e

rc
e

n
t

In
cr

e
a

se
 in

 T
o

ta
l D

a
ta

 M
is

se
s 4K

8K

16K

32K

64K

FIGURE 5. Bandwidth increase over non-speculative
execution for different cache associativities. Caches are 32K and
the speculation depth is 25.

cc1 eqntott espresso sc xlisp
0

2

4

6

8

10

12

14

16

P
e
rc

e
n
t
In

c
re

a
s
e
 i
n
 T

o
ta

l
D

a
ta

 M
is

s
e
s Direct

2-way

4-way

8-way

execution. To discuss these effects it is helpful to define a
ratio Pn, where

Figure 6 gives Pn for speculation down 25 instructions
using the higher accuracy prediction algorithm. It shows
that speculation reduces the number of correct path misses
so prefetching must dominate the pollution caused by
wrong path reads. Deeper speculation increases the number
of wrong path references, thereby increasing the prefetch
misses and further reducing Pn. Another way to increase
the number of wrong path references is to use a less accu-
rate prediction algorithm to execute more wrong paths.
Figure 7 shows a more dramatic reduction in Pn due to
using the less accurate Algorithm 2. Notice in compress, Pn
increases with depth signaling that pollution, rather than
prefetch, is the dominant effect.

of correct path misses for a given cache with speculation depth n

of non-speculative misses for a given cache
Pn =

FIGURE 6. Pn for different speculation depths using branch
prediction algorithm 1. The cache is 16K with 4-way set
associativity.

cc
1

co
m

pr
es

s

ea
r

eq
nt

ot
t

es
pr

es
so sc

xl
is

p

0.4

0.5

0.6

0.7

0.8

0.9

1

P
n

5

10

25

FIGURE 7. Pn for different speculation depths using branch
prediction algorithm 2. The cache is 16K with 4-way set
associativity.

compress ear eqntott espresso sc xlisp
0.4

0.5

0.6

0.7

0.8

0.9

1

P
n

5

10

25

The cache simulator was modified to directly count the
number of prefetch and pollution misses caused by wrong
path references and it was found that they alone did not
completely account for the change in Pn. It was observed
that wrong path cache hits can also reduce (or increase)
correct path misses. They do so by reordering the lines in a
LRU set associative cache. For example, suppose that a
wrong path reference hits a least recently used line and thus
promotes it to most recently used. Then suppose a cache
read miss occurs in the same set. A different line will be
displaced than if execution were non-speculative. If the line
is needed during correct path execution this action will
have avoided a miss. If the displaced line rather than the
promoted one is needed an additional miss is incurred.
Reordering has only a secondary effect on cache misses
compared to that of prefetch and pollution. Figure 8 shows
the percentage of wrong path misses which were prefetch
or pollution misses. Notice that, with the exception of com-
press, over 50% of misses performed a prefetch.

3.3 Wrong Path Writes

During speculative execution our processor model must
delay all write references occurring down a speculative
path until the branch is resolved. This requires write buffers
between the processor and cache to hold the address and
value of these writes until branch resolution. If the branch
was predicted correctly the writes are released to the mem-
ory system. Otherwise, the suspended writes are squashed.
Figure 9 shows that most instructions are issued specula-
tively so most writes will be temporarily suspended. This
leads to several questions. How many buffers are necessary
to hold most wrong path writes and what write allocation
policy for the cache is appropriate?

FIGURE 8. Breakdown of prefetch and pollution effects. The
cache size is 16K with 4-way set associativity.

c
c
1

c
o

m
p

re
s
s

e
a

r

e
q

n
to

tt

e
s
p

re
s
s
o s
c

x
lis

p

0

10

20

30

40

50

60

70

80

90

P
e

rc
e

n
ta

g
e

 o
f

W
ro

n
g

 P
a

th
 M

is
s
e

s Prefetch

Pollution

3.4 Speculative Write Buffers

The instrumented benchmarks were run and the number
of writes in speculative paths were counted to estimate the
number of needed buffers. Figure 10 shows the results. To
fully execute 90% of the speculative paths, 4, 6, and 10
write buffers are required for depths of 10, 20, and 30
respectively. Paths with more write references than avail-
able buffers can still partially complete before instruction
issue must be halted.

3.5 Wrong Path Write Allocate

Most caches which use a copy-back write policy also
implement write allocate, i.e., a write miss causes the line
to be allocated in the cache. Write allocation on a specula-
tive processor can be handled in several ways. One way is
to wait until the branch is resolved and allocate lines for the
correct writes in the cache write buffers. Another way
would be to allocate cache lines for writes as they are being
suspended during speculative execution. This would have
the desirable effect of prefetching the lines so that some

FIGURE 9. Percentage of instructions issued per number of
outstanding conditional jumps.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

P
e
rc

e
n
ta

g
e
 o

f
Is

su
e
d
 I
n
st

ru
ct

io
n
s

Number of Unresolved Conditional Branches

10

20

30

FIGURE 10. Percentage of speculative paths fully executed for
various numbers of speculative write buffers.

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f
S

p
e
cu

la
tiv

e
 P

a
th

 C
o
m

p
le

tio
n
s

Number of Speculative Write Buffers

10

20

30

lines could be in the cache at resolution time. But writes
produced by mispredicted path will also cause write alloca-
tions and this has an unclear overall effect on cache perfor-
mance. Allocations produced by mispredicted paths which
are never taken during correct execution will increase
memory traffic and cache pollution. However, wrong path
write allocation might also prefetch lines for later correct
path execution. Figure 11 compares the effects of allocat-
ing cache lines for all speculative writes or just for commit-
ted writes after branch resolution. The data shows
allocating all writes increases the total memory traffic by a
negligible amount. Furthermore, allocating wrong path
writes performs a small amount of prefetching for later cor-
rect path memory references. Therefore, it is beneficial to
allocate cache lines on all speculative write references prior
to branch resolution.

3.6 Instruction Prefetching

This study has focused on data cache behavior because
the SPEC benchmarks do a poor job of exercising even
small instruction caches [2]. Pollution and prefetch effects
cannot be observed when the full working set fits into the
cache. However, we believe that instruction references pro-
duced during mispredicted paths could perform prefetches
for later instruction references. Table 4 shows that over
50% of the lines which were allocated in the instruction
cache during mispredicted paths were then accessed during
correct path execution later in the program. Thus, half of all
wrong path instruction misses could prefetch useful
instruction cache lines. Since few conflict misses occur in
the non-speculative runs of these applications, it is proba-
ble that the pollution effect of the unused half would be
minimal. However, the additional number of lines allocated
due to executing mispredicted paths is small and will get
smaller with better prediction. An area of further study is
the potential benefit of aggressively prefetching lines down
wrong paths. Since accurate prediction algorithms limit the

FIGURE 11. Effect on memory traffic when wrong path writes
are allocated in the cache.

32K, a=1 32K, a=2 32K, a=4
30000

32000

34000

36000

38000

40000

42000

44000

C
o

m
b

in
e

d
 M

is
s
e

s
 (

th
o

u
s
a

n
d

s
)

tot, no wpwa

tot, wpwa

cp, no wpwa

cp, wpwa

number of wrong path executions this would entail allocat-
ing instruction cache lines from both the taken and not
taken execution paths.

4 Conclusion

We have developed an instrumentation tool to generate
approximate speculative execution trace streams without
the need for an execution simulator. With this tool we were
able to compare the cache performances of speculative and
non-speculative execution models on a suite of application
benchmarks.

From this study, insight was gained into how the
increased number of memory references due to speculation
affect cache performance. While wrong path misses do
contribute to cache pollution, their dominant effect is to
prefetch cache lines for later correct path execution. During
wrong path execution both data and instruction misses allo-
cate useful information over 50% of the time. Although the
actual amount of prefetching is small due to the infre-
quency of wrong path execution, wrong path prefetching
could lead to a viable method of prefetching instruction and
data cache lines in non-numeric code. The major result of
the work is that deep speculation does not significantly
increase data memory traffic in most of the tested applica-
tions. Thus, it is not likely to pose a serious problem for the
cache designs of future speculative microprocessors
exploiting a high degree of instruction-level parallelism.

Acknowledgments

We would like to thank Intel Corp. for its support and
especially Konrad Lai for his guidance and suggestions
throughout this work.

References

[1] D. Alpert, and D. Avnon, “Architecture of the Pen-
tium Microprocessor,” IEEE Micro, June 1993, pp.
11-21.

[2] J. Gee, M. Hill, D. Pnevmatikatos, A. Smith, “Cache
Performance of the SPEC Benchmark Suite,” Tech-

Program Reuse % Program Reuse %

cc1 60 espresso 68

compress 52 sc 56

ear 66 xlisp 60

eqntott 60

TABLE 4. Wrong path instruction reuse - The percentage of
instruction cache lines allocated during wrong path execution
which were later referenced during correct path execution.

nical Report UCB/CSD 91/648, University of Cali-
fornia Computer Science Division, Berkeley, CA.

[3] R. Groves, and R Oehler, RISC System/6000 Proces-
sor Architecture, IBM RISC System/6000 Technol-
ogy, SA23-2619, IBM Corporation, 1991, pp. 16-24.

[4] E. McLellan, “The Alpha AXP Architecture and
21064 Processor,” IEEE Micro, June 1993, pp. 26-
47.

[5] D. Nagle, R. Uhlig, T. Stanley, T. Mudge, S. Sechrest
and R. Brown, “Design Tradeoffs for Software-Man-
aged TLBs,”Proc. of the 20th Annual International
Symposium on Computer Architecture, May 1993,
pp. 27-38.

[6] J. Pierce, “IDtrace: A Trace Generation Tool for the
ix86 Instruction Set,” Technical report, Dept. of
Electrical Engineering and Computer Science, Uni-
versity of Michigan, Dec. 1993.

[7] J. Quinlan, and K. Lai, “Tynero: A Multiple Cache
Simulator,” Technical Report, Intel Corp., Hillsboro,
OR, May 1991.

[8] J.E. Smith, “A Study of Branch Prediction Strate-
gies,”Proceedings of the 8th International Sympo-
sium on Computer Architecture, May 1981, pp. 135-
148.

[9] M. Smith, “Tracing with Pixie,” Technical Report,
Center for Integrated Systems, Stanford University.

[10] C. Stephens, B. Cogswell, J. Heinlein, G. Palmer,
and J. Shen, “Instruction Level Profiling and Evalua-
tion of the IBM RS/6000,”Proc. of 18th Annual
International Symposium on Computer Architecture,
Toronto, Canada, 1991, pp. 180-189.

[11] Sun Microsystems Laboratories, Inc., “Introduction
to SpixTools,” Technical Report, Mountain View,
CA, April 1992.

[12] D. Wall, “Systems for Late Code Modification,” Dig-
ital Western Research Laboratory, Research Report,
June 1991.

[13] T-Y Yeh, and Y. Patt, “Two-Level Adaptive Training
Branch Prediction,”The 24th ACM/IEEE Interna-
tional Symposium and Workshop on Microarchitec-
ture, Nov. 1991, pp. 51-61.

