Published inProceedings of the International Parallel Processing Symposium, April 1994, Cancun, Mexico.
pp. 172-179

The Effect of Speculative Execution on Cache Performance
Jim Piercé and Trevor Mudge

University of Michigan

1. Jim Pierce was supported in this work by a grant from the Intel Corp.

Abstract is resolved. If the prediction were incorrect, the processor

Superscalar microprocessors obtain high performance state must be restored tq the state prior to the predicted
by exploiting parallelism at the instruction level. To effec- Pranch and restart execution down the correct path.
tively use the instruction-level parallelism found in gen- ~ Due to of their deep pipeline and high issue rates,
eral purpose, non-numeric code, future processors will future processors will speculatively execute many instruc-
need to speculatively execute far beyond instruction fetchtions prior to branch resolution. While this speculation
limiting conditional branches. One result of this deep enables instruction issue to continue during branch com-

speculation is an increase in the number of instruction and Putation, it produces some unavoidable side effects. One
data memory references due to the execution of mispre-effeCt is an increase in the number of instruction and data
dicted paths. Using a tool we developed to generate specul€ferences. These extra, “wrong” references could cause
lative traces from Intel architecture Unix binaries, we cache pollution and significantly increase memory bus
examine the differences in cache performance betweerfraffic. On the other hand, they could act as prefetching
speculative and non-speculative execution models. Theeferences, bringing data or instruction lines into the cache
results pertaining to increased memory traffic, mispre- for later, correctly predicted path execution. Another effect

dicted path reference effects, allocation strategies, and stemming from speculation is that only valid writes should
speculative write buffers are discussed. modify the cache since they must be easily undone during

misprediction recovery. These changes in the execution

model warrant a reexamination of current memory system

models. In this paper we examine the effects of deep spec-
ulation on cache behavior.

1 Introduction

Parallel computation is an increasingly important

research area in the quest for faster general purpose micro- ¢ ;—Zeéiiﬂtr/zth?odc;c;rsgi?sﬂglngnt:;t((:ear;heempoerrfcr)(rerpee:gf](ze
processors. Superscalar processor architectures exploi P P 9 y

instruction-level parallelism to concurrently run multiple traces with a full execution simulator and use them as

instructions per cycle. Some current implementations can'gfourtstc;rae Ct?rflzecsolnmslﬂ?ntionr. Li)rg‘tc;]rtijonatl)tsilsg Z)rfjmrjgr?n:lsm;r;
issue two instructions per cycle and several can issue foul!':\lternative we have desi gned a code instrumenta{tion tool
or even six instructions at once under certain conditions ’ 9

[1][3][4]. Research has shown that more instruction-level called spex which runs on Intel architecture (ix86) Un|x_
parallelism exists in often used, non-numeric code but systems and can be used to generate memory traces which

architecture designers face many problems in harnessingire a close approximation o that of a specul_auve proces-
this potential concurrency. One problem is that the length or. Long traces can pe optamed relatively quickly without

of an unbroken stream of instructions, a basic block, aver—the use of an e>§ecut|on S|_mulat0r. Spex adds branch pre-
ages from 3.0 - 6.5 instructions in applications such asd|ct|on, speculative execution, and memory trace produc-

those found in the SPEC benchmark suite. Thus to achievé'®" tbo an existing blnarty. It crea;.tes a new blnalrytlwmch
high issue rates instructions must be fetched the basic@n P€ fun on a current generation, non-specufative pro-
block ending conditional branches. This can be accom- ¢€SSor: The num-ber of cyc_les requwgd to rgsolve each con-
plished by speculatively executing instructions past dlﬂ_or;]a! bran_ch Itst af)hprc;xn’?alted Wll.tth E f|xer<]j valulei. n,
branches, i.e., the direction of the branch is guessed beford/1CN 1S an INput 1o the 1oal. In reality, branch resolution

the branch condition is computed in the pipeline and exe—;Imes ('jn plpelme;jh art1d sup;ersc?jlir mi':u;)hlnesh V\;'rlll v;\r%/
cution continues in the predicted direction until the branch epending upon the type ot condilional branch, the data

dependencies between instructions currently in the pipe-

trev
Typewritten Text

trev
Typewritten Text
pp. 172-179

line, the number, type, and data dependencies of instrutrace generation tools add additional instructions to a pro-
tions waiting to be issued, and processor exceptions. Thugtam to record runtime information and memory references
our results should be interpreted as bounds for machineghile preserving the original logical operation of the pro-
that speculate no more than n instructions past a condiram [10][12]. In addition, spex incorporates branch pre-
tional branch. diction and wrong path recovery code to allow the
Since the spex model and a true speculative processexecution of mispredicted paths. In use, spex is similar to
have different viewpoints of speculative paths, it is importhat of IDtrace for the Intel architecture processors and
tant to clarify some terms used in this paper. A speculativpixie for the MIPS processor family [6][9]. For input, spex
path is the execution path taken after a conditional branalequires a binary file and two humbers. One number speci-
prediction. The spex model can immediately classify thdies the choice of branch prediction algorithm and the other
speculative path as a correct path (correctly predictedumber is the branch resolution depth. A depth argument of
direction) or a wrong path (mispredicted direction) by comzero corresponds to no speculation while a positive argu-
paring the predicted direction with the actual result of theanent represents the number of instructions to be executed
branch. Thus it can tag references generated on these patlessvn a mispredicted path before recovery. Since all
as correct path references or wrong path references. It musispredictions take the same number of instructions to
be remembered, however, that a real speculative processesolve, the case of a later conditional branch being
cannot foresee the accuracy of the prediction until theesolved before an earlier one cannot occur.
branch is resolved some distance down the speculative To date, seven prediction algorithms have been imple-
path. Therefore, an immediate cache action such as limeented and they can be divided into four classes. Three are
allocation cannot be based upon the correctness of the retatic algorithms: always taken, prediction based on branch
erence. opcode, and prediction based on opcode and direction. Two
We used spex and several different cache simulators #re dynamic predictors using a variable sized history table.
model cache performance when speculatively executinghe table is indexed by the address of the conditional
SPEC92 applications. It was not our intent to specify atranch. It can be direct-mapped, up to eight-way set asso-
optimal cache configuration for a certain processor basedative, or a table entry can be shared by multiple
only upon application generated references. Many studiesddresses. One dynamic algorithm has a bit per table entry
have shown that this leads to meaningless conclusions [Fjorresponding to the previous direction of the branch. The
Instead we examined the differences in cache performanather has a two or three bit saturating counter per table
between the speculative and non-speculative executiaentry to maintain a weighted history for each branch [8].
models. We believe that similar results would be foundAnother group of prediction algorithms use two-level adap-
using a more complete workload containing OS effects. tive training schemes with various size history tables and
The main result of the study is that deep speculationegisters [13]. The final type is a profile algorithm where
causes a significant increase in the number of data refdahe direction is determined by looking for the prediction
ences, yet data misses increase by usually less than 15%elmiry in a file. If an entry for a particular branch doesn't
fact, by calculating the traffic ratio we found that cacheexist in the file, one of the above algorithms is used to pre-
efficiency actually increases as speculation increase. Fudict the branch.
ther investigation revealed that wrong path misses exhibit The memory trace generated by spex is a list of 5-byte
prefetch, pollution, and LRU reordering effects. In mostentries (1 byte tag, 4 byte address), one for each instruction
observed cases the prefetch effect is dominant and wrormy data memory reference. Different tags are used to differ-
path misses cause a decline in the number of correct pathtiate between correct path and wrong path references.
misses. In addition, it is observed that mispredicted patMost generated traces are extremely long and therefore are
instruction references also exhibit this prefetching effectpiped directly to a memory simulator. As an example of
Finally, we discuss write allocation policies and the numbeuse, spex can instrument a program called bench by typing:
of buffers required to hold speculative writes.
spex -d 10 -b 5 bench
2 Description of Spex where bench is a statically-linked executable. The new
executable,bench.spex , will execute 10 instructions
Spex is a binary instrumentation tool which allows thedown a wrong path and use branch prediction algorithm
user to gather speculative traces on a non-speculative pradmber 5 (dynamic counter with a default counter size of 2
cessor. It was built for an Intel architecture (386, i486bits). Running spex.bench creates two more files:
Pentium) computer running Unix SysVR4 and currentlybench.spst , a statistic file containing runtime informa-
will instrument statically-linked code produced by thetion andbench.sptr , the trace file. These files can then be
Intel/AT&T and USL CCS C compilers. Spex and other

used by postprocessing tools or the trace file can be piped The instrumented code action is straightforward.
into a memory system simulator. Assume a correct path is being executed. At each branch
the prediction algorithm is called and the result is com-
pared with the known actual direction of the branch. If they
are the same execution continues down the correct path. If

The executable file structure and memory referencthe branch is mispredicted, the register state and correct
instrumentation is based on that of a previous 486 instruaext instruction location are saved, a counter is set to the
mentation tool, IDtrace. In short, the text section is disaswrong path depth argument, and execution begins down the
sembled, binary code is inserted before every instructionyrong path. The following actions are taken for each
all control instructions are relocated to account for the textvrong path instruction:

2.1 Instrumentation Details

expansion. Then, the new text, the original, unmodified®
data sections, some working tables, and trace buffers are
combined to create the new executable. Complex ix88
instructions, indirect addressing, and variable instruction
lengths are some of the issues which make binary instru-
mentation difficult and sometimes impossible. In-depth dis-*
cussion of these issues and some restrictions on applicable
programs can be found in [6]. The speculative instrumentas
tion adds significantly to the size and runtime of the new

The counter is decremented and when it is zero wrong
path execution is terminated.

If the instruction performs a read or write the address
is first checked against segment boundaries to prevent
segment violations caused by incorrect data.

Memory reference entries are output with special
wrong path tags.

If the instruction performs a write, the address and
original value are stored in a write restore buffer.

binary. Code expansion is roughly 25 times. Runtime is When wrong path execution terminates the writes are
increased by factors of 25-45 for zero depth (no speculamndone using the data stored in the write restore buffer, the
tion) and 35-65 for depth 10 speculative execution. In comkegister state is restored, the prediction algorithm is
parison, IDtrace produces a binary about 12 times largefpdated, and execution restarts at the saved correct branch
and increases the runtime by about a factor of 12 for a fupath address. Sometimes wrong path execution can termi-
execution trace. Spex adds code prior to each conditionahte without going down the full wrong path depth. This

branch to call the prediction algorithm and possibly begircan happen in the following cases:

wrong path execution. Code must also be added before
each instruction to possibly exit from wrong path execu-*®
tion. Finally, guard instructions must be added prior to any
instruction that can cause an exception. This prevents ah
exception from occurring and halting execution while pro-
cessing incorrect data down a wrong path. For instance,
suppose during execution of an instrumented program a
pointer has yet to be initialized and it has the value zero.
The original code might be of the form

if (pointer initialized
thenreference pointer
elseinitialize pointer

and the conditional branch corresponding to ithstate-
ment could be mispredicted. Then an attempt would be
made to reference memory location zero and a segmenta-
tion fault would halt execution. Boundary checking code is®
added before all reads and writes to prevent this error.
Unfortunately, there are many more exceptions such as
divide by zero and floating point errors which could be trig-

Exit call - Cannot exit during wrong path execution.
System call - This is a call to the OS and cannot be
traced.

Data segment fault - An invalid read or write outside
the data segment would cause a fault if allowed to pro-
ceed.

Indirect jump - An attempt to index a jump table with
an invalid index will usually cause execution to con-
tinue outside the text section and so wrong path execu-
tion is always halted.

Indirect call - Indirect calls in instrumented code are
handled by a runtime lookup matching the original tar-
get address with the new target address in the instru-
mented code, see [6]. If the original address is
computed from incorrect data the lookup will fail and
wrong path execution is halted.

Execution fault - This could be caused by a floating
point or divide by zero exception. Code cannot be
added before every instruction to test for all possible
exceptions so complete execution terminates.

gered by incorrect data during wrong path execution. Since The above termination conditions occur very infre-
it is too cumbersome to add code to check for all excepguently. In the benchmarks described below, wrong paths

tions only segmentation fault protection code is added

throughout the instrumented code. Deep path speculation

on some programs causes floating point errors and codelis The C signal library functions could have been used to handle

added on an individual basis to handle these dases all exceptions efficiently but its use would have interfered with
' breakpoint exceptions and made debugging binary code

extremely difficult.

executed to the full depth of 25 instructions over 90% oftanding memory requests. If a wrong path reference
the time, see Table 1. Furthermore, it is unlikely that a reatauses a read miss,the cache line is updated even if the
speculative processor would continue issuing instructionbranch is resolved before the request to memory is com-
down a path which produced a segmentation fault. Thugleted. Speculative path writes are held until the branch is
premature terminations do not compromise the accuracy oésolved so that the cache always contains valid data.

the trace. Finally, the cache write policy is copy-back with write allo-

cation for correct writes.

Termination Type Occurrences Percentage Two branch prediction algorithms are used in this study.

System Call 347K <1% Algorithm 1 is a two-level adaptive scheme with a 512

Data Segment Fault 14.1M 8% entry, 4-way associative register table and a 4096 entry pat-

Indirect Jump 9a7 0% tern 'Fable_contamm_g 2_—b|t saturating counters _[13]. _Thls
algorithm is expensive in terms of hardware but it achieves

Indirect Call 13K 0% excellent accuracy for the benchmarks in our study, see

TABLE 1. Termination statistics -The number and percentage ofTabIe_ 3. Itis the algo_mhm us_ed unless otherwise spe_C|f|ed.
mispredicted paths which were terminated before executing dowA\g0rithm 2 uses a simpler history table of 1024, 2-bit sat-

25 instructions. Statistics are for the combination of all urating counters. No tags are recorded so multiple
benchmarks. The total number of mispredicted paths was 174.8 addresses which map to the same table entry will share the
million. counter.
3 Results Program | Alg. 1 Alg. 2 |Program Alg. 1 Alg. 2
ccl 88 85 espresso 93 86

To study the effect of speculative execution on cache compress| 89 87 || sc 96 92
performance, traces were generated by spex instrumentedar 96 94 xlisp 95 85
code and fed into two cache simulators: a modified versioneqntott 9% 82
of Tynero and a multicache simulator designed to monitor

prefetching and pollution effects [7]. Both simulators dis-TABLE 3. Branch prediction accuracies.

tinguish between correct path references and misses and

wrong path references and misses. The test suite consistgd Total Data Traffic

of the SPEC92 C benchmarks, see Table 2. All experiments

were run on an Intel 50 MHz i486 machine running USL The main result of our study is that the total data mem-
Unix SysVR4.2. ory traffic is not significantly increased by deep speculation
in most benchmarks. Figure 1 shows the percent increase in
total (correct and wrong path) misses of speculative execu-

Program Description

ccl Major forked process of GNU C Compiler tion over that of non-speculative execution.
compress | Unix compression utility 20 —
ear Inner ear model, floating point 9 80 . °
eqntott Boolean equation to truth table translator % 70 10
espresso Logic minimization tool g 60 I D 2
sC Spreadsheet Program % jz |:| 50
xlisp XLISP interpreter solving 8 queens problem § 2 .
TABLE 2. The SPEC92 benchmarks used in this study. g 20
& 101 B
Our processor/memory model is a multi-issue, pipelined o4 ‘ ﬂ‘l‘zﬂ_"-d_ —— %_T
processor with out-of-order execution requiring deep spec- g 4 § 8 g & &
ulation to maintain a high instruction issue rate. All mispre- %L g %)
S

dicted paths are assumed to execute down a constanlr_. . . :
defined depth before branch resolution. The processc IGURE 1. Speculative data miss percentage increase over
prede p : p that of non-speculative execution. The cache is 32K with 4-way

has a first level set-associative, non-blocking cache with arset associativity.

LRU replacement policy. Cache line size is fixed at 32

bytes for all experiments_ The cache Comp|etes all out- Figure 2 shows that there is a substantial increase in the
number of data references due to speculation (up to 75%

for 50 deep speculation) yet for most benchmarks deep o.9-

speculation increases the total number of data cache misse$.s - Ho
by only around 15% over non-speculative data cache o7 []s
misses. The traffic ratio, defined as § 06 7] 10
=
(cache misses + copy-backs) * (cache line size) F 0.4 7
traffic ratio = :) 2 sl ’ . 50
(memory references without a cache) * (word size) o A 7
0.2 %
_ . _ 01 .
is a measure of the efficiency of the cache. Figure 3 shows | i i B
that the cache usually becomes more efficient, traffic ratio < - 3 a
o =
x

decreases, as speculation increases. The exception to this is
compress. A 0.71 traffic ratio without speculation from
Figure 3 reveals that the cache is not well suited for thisFIGURE 3. Traffic ratio for different benchmarks and
application. Repeating the experiment using a smaller lincSPeculation depths. The cache size is 32K and is 4-way set

X . . . associative.
size resulted in a lower miss ratio. Furthermore, 8% of the

= o

2 3

c

=3 <t

@ S
@
@

compress |

non-speculative references missed the cache when specy-25
. . . 4K
lating 25 instructions deep. We suspect that compress haj .
poor locality down several mispredicted paths which = 20 [] e
repeatedly get executed. The large line size magnifies thg] . 16K
traffic problem. More work is required to find which glsi
instructions in compress produce these misses. S |:| 32K
1000 $ 10
I] 64K
— 900 § . 0 g .
[o]
c = 1
% 800)] |:| 5 z 5]
£ 700 7 N 7 s
8 600 2 §§ w0 ¢
3 7 M 0}
E 500 é ﬁ ; ? § |:| % ccl egntott espresso sc xlisp
5} - 7 . . .
o« 400 T T s0 FIGURE 4. Bandwidth increase over non-speculative
s b e i ~ : i
% 300 ol Z =l g y ; \ execution for different cache sizes. Caches are direct mapped
S o0l g ay §Ir_§ §I | § | § and the speculation depth is 25.
5 Aol el el el
F 100 A
8 708 70N N
o] gial RACER RSN RECEN NERY 16

sc

-
~
|
=]
D
=1
2

ear
xlisp

eqntott
espresso

._‘
)
|
ne
=
2

12}
73
o
4
S
£
<}
o

FIGURE 2. Total data references. The zero depth speculation
represents no speculation.

._‘
o
!
&
5
=

oo
]
[]
®
=
2

se in Total Data Misses

The next two figures display how the bandwidth
increase changes with increasing cache size and increasirig ° | 6]
associativity. As would be expected, configuration change§ 2]
which reduce pollution generally reduce the additional |
bandwidth required for speculative execution. The incon-5 <]
sistent data for large associativities is probably due to thé o

small number of misses. ccl egntott espresso SC xlisp
FIGURE 5. Bandwidth increase over non-speculative
3.2 Wrong Path Miss Effects execution for different cache associativities. Caches are 32K and

the speculation depth is 25.

There are several ways that the additional wrong pathhese wrong path misses are called prefetch misses and
references can affect the cache. First, they can prefetch dakgy reduce the number of correct path misses. On the other
which will later be used during correct path execution. Ahand, pollution misses increase the number of correct path
miss during correct path execution can then be avoided fnisses. They are caused by wrong path read misses allocat-
this data is accessed before being displaced in the cachg lines which displace lines needed for later correct path

execution. To discuss these effects it is helpful to define
ratio B,, where

of correct path misses for a given cache with speculation depth

P, =

of non-speculative misses for a given cache

Figure 6 gives Rfor speculation down 25 instructions

using the higher accuracy prediction algorithm. It showsg "
that speculation reduces the number of correct path missés™ |
so prefetching must dominate the pollution caused by °°
wrong path reads. Deeper speculation increases the number S
of wrong path references, thereby increasing the prefetch

misses and further reducing, FAnother way to increase

a 9
2 80 . Prefetch
]

'é 70 |:| Pollution

E=
& 604

2501
g
2 40
5
© 30

g
5 204

1
ear
sc

Q

compress
eqntott
espresso
xlisp

FIGURE 8. Breakdown of prefetch and pollution effects. The

the number of wrong path references is to use a less acccache size is 16K with 4-way set associativity.
rate prediction algorithm to execute more wrong paths.

Figure 7 shows a more dramatic reduction jdRe to
using the less accurate Algorithm 2. Notice in compress,
increases with depth signaling that pollution, rather thal
prefetch, is the dominant effect.

1,

]] K
0.9

] / 10

| g

0.8—: % 25
£ 07
o.eé
054
0.4

ccl
I
sc

compress

FIGURE 6. P, for different speculation depths using branch
prediction algorithm 1. The cache is 16K with 4-way set
associativity.

l,
] . 5
o.9€ 0 |:| 10
0.8—; H VA 25
£ 0.75 1
o.eé H
0.55 1

: _.
compress ear eqntott espresso sc xlisp
FIGURE 7. P, for different speculation depths using branch
prediction algorithm 2. The cache is 16K with 4-way set
associativity.

The cache simulator was modified to directly count the

Fnumber of prefetch and pollution misses caused by wrong

Iﬁ)ath references and it was found that they alone did not
completely account for the change ip R was observed
that wrong path cache hits can also reduce (or increase)
correct path misses. They do so by reordering the lines in a
LRU set associative cache. For example, suppose that a
wrong path reference hits a least recently used line and thus
promotes it to most recently used. Then suppose a cache
read miss occurs in the same set. A different line will be
displaced than if execution were non-speculative. If the line
is needed during correct path execution this action will
have avoided a miss. If the displaced line rather than the
promoted one is needed an additional miss is incurred.
Reordering has only a secondary effect on cache misses
compared to that of prefetch and pollution. Figure 8 shows
the percentage of wrong path misses which were prefetch
or pollution misses. Notice that, with the exception of com-
press, over 50% of misses performed a prefetch.

3.3 Wrong Path Writes

During speculative execution our processor model must
delay all write references occurring down a speculative
path until the branch is resolved. This requires write buffers
between the processor and cache to hold the address and
value of these writes until branch resolution. If the branch
was predicted correctly the writes are released to the mem-
ory system. Otherwise, the suspended writes are squashed.
Figure 9 shows that most instructions are issued specula-
tively so most writes will be temporarily suspended. This
leads to several questions. How many buffers are necessary
to hold most wrong path writes and what write allocation
policy for the cache is appropriate?

30 lines could be in the cache at resolution time. But writes
1 . 10 produced by mispredicted path will also cause write alloca-
25 |:| 20 tions and this has an unclear overall effect on cache perfor-
] mance. Allocations produced by mispredicted paths which
20: @ 30 are never taken during correct execution will increase
memory traffic and cache pollution. However, wrong path
write allocation might also prefetch lines for later correct
- path execution. Figure 11 compares the effects of allocat-
ing cache lines for all speculative writes or just for commit-
5 M R T ted writes after branch resolution. The data shows
[I_E I allocating all writes increases the total memory traffic by a
0-HR e e e e B B negligible amount. Furthermore, allocating wrong path
0123450678 91011121314 writes performs a small amount of prefetching for later cor-
Number of Unresolved Conditional Branches Lo ..
rect path memory references. Therefore, it is beneficial to
allocate cache lines on all speculative write references prior
to branch resolution.

44000

15 -

10 A HIH

T

Percentage of Issued Instructions

FIGURE 9. Percentage of instructions issued per number of
outstanding conditional jumps.

3.4 Speculative Write Buffers

. tot, no wpwa
{ot, wpwa
. cp, no wpwa
I:I cp, wpwa

The instrumented benchmarks were run and the numbey 42000
of writes in speculative paths were counted to estimate th%
number of needed buffers. Figure 10 shows the results. T 4000
fully execute 90% of the speculative paths, 4, 6, and 1&
write buffers are required for depths of 10, 20, and 308
respectively. Paths with more write references than avail£ 36000
able buffers can still partially complete before instruction@
issue must be halted. 5

38000

=
o
o

AN

32K, a=1 32K, a=2 32K, a=4

80
70 77 w0 FIGURE 11. Effect on memory traffic when wrong path writes
) are allocated in the cache.

3.6 Instruction Prefetching

This study has focused on data cache behavior because
the SPEC benchmarks do a poor job of exercising even

Percentage of Speculative Path Completions
[
o
|

E gl Ngl Ba Z A small instruction caches [2]. Pollution and prefetch effects
6 2 4 6 8 10 12 14 cannot be observed when the full working set fits into the
Number of Speculative Write Buffers cache. However, we believe that instruction references pro-

\Eéﬁgqunﬁ%bgr?sr%?gtgggu?;ti?/%e@l:ilgl\éﬁfPeartshS fully executed for g, eq during mispredicted paths could perform prefetches
for later instruction references. Table 4 shows that over
50% of the lines which were allocated in the instruction

3.5 Wrong Path Write Allocate cache during mispredicted paths were then accessed during
correct path execution later in the program. Thus, half of all
Most caches which use a copy-back write policy alsavrong path instruction misses could prefetch useful
implement write allocate, i.e., a write miss causes the linfstruction cache lines. Since few conflict misses occur in
to be allocated in the cache. Write allocation on a speculahe non-speculative runs of these applications, it is proba-
tive processor can be handled in several ways. One waylige that the pollution effect of the unused half would be
to wait until the branch is resolved and allocate lines for theninimal. However, the additional number of lines allocated
correct writes in the cache write buffers. Another waydue to executing mispredicted paths is small and will get
would be to allocate cache lines for writes as they are beirgmaller with better prediction. An area of further study is
suspended during speculative execution. This would have potential benefit of aggressively prefetching lines down
the desirable effect of prefetching the lines so that som&rong paths. Since accurate prediction algorithms limit the

number of wrong path executions this would entail allocat-
ing instruction cache lines from both the taken and not
taken execution paths. 3]

Program Reuse % ||Program Reuse %

ccl 60 espresso 68

compress 52 sc 56 (4]
ear 66 xlisp 60

eqgntott 60

(5]
TABLE 4. Wrong path instruction reuse - The percentage of
instruction cache lines allocated during wrong path execution
which were later referenced during correct path execution.

4 Conclusion (6]

We have developed an instrumentation tool to generate
approximate speculative execution trace streams without
the need for an execution simulator. With this tool we were
able to compare the cache performances of speculative ah
non-speculative execution models on a suite of application
benchmarks.

From this study, insight was gained into how the 8
increased number of memory references due to speculatién]
affect cache performance. While wrong path misses do
contribute to cache pollution, their dominant effect is to
prefetch cache lines for later correct path execution. During
wrong path execution both data and instruction misses all9]
cate useful information over 50% of the time. Although the
actual amount of prefetching is small due to the infre l
guency of wrong path execution, wrong path prefetchin&
could lead to a viable method of prefetching instruction and
data cache lines in non-numeric code. The major result of
the work is that deep speculation does not significantly
increase data memory traffic in most of the tested applica-
tions. Thus, it is not likely to pose a serious problem for th¢l1]
cache designs of future speculative microprocessors
exploiting a high degree of instruction-level parallelism.

Acknowledgments [12]

We would like to thank Intel Corp. for its support and
especially Konrad Lai for his guidance and suggestion&m]
throughout this work.

References
[1] D. Alpert, and D. Avnon, “Architecture of the Pen-
tium Microprocessor,” IEEE Micro, June 1993, pp.
11-21.

J. Gee, M. Hill, D. Pnevmatikatos, A. Smith, “Cache
Performance of the SPEC Benchmark Suite,” Tech-

(2]

nical Report UCB/CSD 91/648, University of Cali-
fornia Computer Science Division, Berkeley, CA.

R. Groves, and R Oehler, RISC System/6000 Proces-
sor Architecture, IBM RISC System/6000 Technol-
ogy, SA23-2619, IBM Corporation, 1991, pp. 16-24.

E. McLellan, “The Alpha AXP Architecture and
21064 Processor,” IEEE Micro, June 1993, pp. 26-
47.

D. Nagle, R. Uhlig, T. Stanley, T. Mudge, S. Sechrest
and R. Brown, “Design Tradeoffs for Software-Man-
aged TLBs,Proc. of the 20th Annual International
Symposium on Computer Architectuvay 1993,

pp. 27-38.

J. Pierce, “IDtrace: A Trace Generation Tool for the
ix86 Instruction Set,” Technical report, Dept. of
Electrical Engineering and Computer Science, Uni-
versity of Michigan, Dec. 1993.

J. Quinlan, and K. Lai, “Tynero: A Multiple Cache
Simulator,” Technical Report, Intel Corp., Hillsboro,
OR, May 1991.

J.E. Smith, “A Study of Branch Prediction Strate-
gies,”Proceedings of the 8th International Sympo-
sium on Computer Architectyr®lay 1981, pp. 135-
148.

M. Smith, “Tracing with Pixie,” Technical Report,
Center for Integrated Systems, Stanford University.

C. Stephens, B. Cogswell, J. Heinlein, G. Palmer,
and J. Shen, “Instruction Level Profiling and Evalua-
tion of the IBM RS/6000,Proc. of 18th Annual
International Symposium on Computer Architecture
Toronto, Canada, 1991, pp. 180-189.

Sun Microsystems Laboratories, Inc., “Introduction
to SpixTools,” Technical Report, Mountain View,
CA, April 1992.

D. Wall, “Systems for Late Code Modification,” Dig-
ital Western Research Laboratory, Research Report,
June 1991.

T-Y Yeh, and Y. Patt, “Two-Level Adaptive Training
Branch Prediction,The 24th ACM/IEEE Interna-
tional Symposium and Workshop on Microarchitec-
ture, Nov. 1991, pp. 51-61.

